
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 16
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Study on Improving Efficiency of Software by
Detecting and Correcting Code Smells

Suganya D, Kathiresan V, Gunasekaran S

ABSTRACT-Code smells denotes the poor standards of the implementation strategy. Presence of code smells makes source code maintenance a
tedious process and also making proneness to faults and changes higher issue. Code smells are also something which results due to poor designing
solutions called anti-patterns. These, code smell becomes a challenge for the software engineers to make out changes which might be a hindrance for
the software and evolution of software. Hence, this survey paper focuses on various methods and techniques for improving the efficiency and functioning
of the software. Code smells are defects in coding or design of a software which does not stop the software from functioning but it slows down the
efficiency of the software gradually. It has a serious impact on the maintenance of the software in a drastic manner where the structural characteristics
of software indicates a code or design problem that makes software hard to evolve and maintain which triggers refactoring of code. Code smells are
suboptimal design choice degrading different aspects of the code quality indicating deeper design problems which causes problems in the evolution of a
software product. Not all of them are equally problematic and some may not be problematic at all in some contexts.

Index Terms- Anti-patterns, refactoring, code smells, CRO, DETEX, DÉCOR, software evolution.

—————————— ——————————

1. INTRODUCTION
In computer programming, Code smells are generally not
flaws or errors or bugs, rather they are not incorrect
technically. Currently, it does not stops the program from
functioning but they indicate weakness in structuring or
designing an application, This in turn makes the
development slower, riskiness of bugs are increased which
leads to failure in the future. Code smells occurs in both
production code and test code. They are concepts by Fowler
and Kent Beck suggesting that they are structural
characteristics of software which makes software hard to
evolve and maintain. Presence of code smells denotes bad
designing and leads to less maintainable code and
maintenance cost is increased. They are inflated due to poor
software structuring, incomprehensible code, sloppy and
error prone practices and inflexible design structures. The
presence of smells in the code may degrade quality
attributes leading to a higher likelihood of introduction of
defects. In short, code smells or design smells are
symptoms of potentially problematic code from software
maintenance perspective.

However, they are only indicators of problematic code.

The term code smells has come up with the way of helping
the developers to recognize the codes which are defected
and when those codes are need to be refactored.

2. METHODS FOR DETECTION AND CORRECTION OF
CODE SMELLS
Marouane Kessentini et.al[2] suggest an approach which is
automated for the need for generating rules to detect and
correct defects. Code smells are generally not flaws, rather
something which reduces the efficiency. This paper
involves Genetic programming for automatic generation of
rules to detect defects, whereas Genetic algorithm for
correcting solutions. Blob, spagehetti code and functional
decomposition are the code smells used for demonstrating
this automated approach. It is arrived with the aim of
detecting defects and correcting them as an optimization
problem. Information used here are those from the
previous projects called Defect examples. In detection step,
design defects are detected by generating rules on the basis
of software quality metrics. Set of base of examples, set of
defect examples, set of quality metrics are inputs and set of
rules are given as output which being generated. In
correction step, the generated rules in detection steps are
inputs including set of refactoring as output. For, this
automated approach the symptoms are trained with fitness
functions calculating each solution by comparison of
detected defects. Since bad examples of code smells are

————————————————
• D.Suganya is currently pursuing masters degree program in Software

Engineering in Coimbatore Institute of Engineering and Technology, India,. E-
mail: sgsuganya12@gmail.com

• Mr.V.Kathiresan is currently working in Computer Science engineering in
Coimbatore Institute of Engineering and Technology, India,. E-
mail:xyz.kathir@gmail.com

• Dr.S.Gunasekaran is currently working as head and Professor in Computer
Science engineering dept in Coimbatore Institute of Engineering and
Technology,India, E-mail gunaphd@yahoo.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 17
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

TABLE 1

TYPES OF CODE SMELLS

CODE-SMELLS DESCRIPTION
Duplicated code Identical code exists in more than one location.

Long method Method or procedure that has grown too large.

Large class Class that has grown too large.

Too many parameters Long list of parameters is hard to read making calling and testing the function complicated.

Feature envy Class using methods of another class excessively

Inappropriate intimacy Class that has dependencies on implementation details of another class.

Refused bequest Class that inherits a methods that it does not use at all.

Lazy class Class that does too little.

Data Class Classes with fields and getters and setters that do not implement any function in particular.

Data Clump Clumps of data items always found together whether within classes or between classes.

Shotgun Surgery Change in a class resulting in need to make a lot of little changes in several classes.

God Class A class that takes too many responsibilities relative to the classes with which it is coupled.

God Method A class having if at least one of its methods is very large compared to the other methods in the
same class.

Blob One large class monopolizes the behavior of a system while the other classes primarily
encapsulate data.

used it will eventually lead to the usage of context-specific
data, where it includes best/worst practices. Next, issue is

rule generation which depends on detection results that are
randomly generated.

Ali Ouni et al.[1] proposes an approach based on
chemical reaction optimization developed for the purpose
of detection and correction of code smells with respect to
the prioritization schema including severity, importance an
riskiness of code smells. They increase the rate of
maintaining software and makes tedious in making the

changes. Refactoring remains as an efficient way in
removing code smells by changes made only internally
without affecting the external behavior. When it comes to
large scale systems fixing of code smells also remains at
highest rate. So, prioritization of code smells can be done
based on certain criteria which will be helpful in fixing the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 18
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

code smells. This is done by an effective approach Chemical
Reaction Optimization (CRO). Automated refactoring
suggestions are for detecting and correcting the riskiest
code smells that are to be prioritized. To make this efficient
near-optimal sequence of refactoring from huge number of
refactoring are done by CRO. Chemical refactoring
optimization is used to find appropriate refactoring code
smell while prioritizing most risky code fragments. Blob,
data class, spaghetti code, functional decomposition,
shotgun surgery, feature envy are the code smells involved
for this approach. Set of inputs given are source code to be
refactored, possible refactorings to be applied to list of code
smells, bad smell detection rules, score of risk and severity
for each of the detected code smells, preferences and
prioritization of software maintainer. For these set of
inputs, the set of output generated are optimal sequence of
refactorings, specific refactorings list to improve software
quality by reducing the number of detected code smells.
The most important prioritization measures are
formulating the refactoring tasks to correct code smells are
severity, riskiness and priority. CRO designing is done with
elements for code smells correction problem which includes
solution coding in which specifically vector-based solution
coding is used. Elementary reaction operators are used in
further exploration in searching space for CRO. Simulations
are done many times and their parameter settings has no
general rules in determining them. Yet, correlation between
correcting code smells are to be determined and evaluated
by reducing the number of refactoring steps and improving
its coherence.

Naouel Moha et al.[3] suggest code and design smells
are poor solutions in designing problems and those which
also steps the evolution of a system. Methods are been used
for detection of code smells contributed are DECOR,
DETEX and Validation DETEX. By using DETEX, four code
smells used are antipatterns Blob, functional
decomposition, spaghetti code and Swiss Army Knife are
for their automatic detection of algorithms. Code and
design smells are not bugs, but something which hinders
the evolution of the system from functioning. Fowler
presented code smells whose structures in source code
which suggests the possibilities of refactorings. Few smells
in designing are duplicate code, long method, large class
and long parameter lists. The cost of maintenance and
development phase can be reduced in case of the code
smells are detected. In large scale systems, the detection of

code smells will be a very tedious work ad it becomes more
time and resource consuming. Code smells are classified
into two main categories inter and intra class and it is
further subdivided into structural for static analysis, lexical
for NLP and measurable for metrics. DÉCOR- Detection
and CORrection method which constitutes all the necessary
steps for specifying and detecting the code smells. Various
steps are included in this algorithm. Description analysis is
for text based description of smells. Specification
constitutes vocabulary and processing translates the
algorithms. Detection of code smells are done with
operational specification and validation with source code
with suspicious code constituents. DETEX-DETection
EXpert helps software engineers by unified vocabulary
with high level abstraction and along with domain specific
language. Various DETEX steps are in terms of precision
and recall. Domain analysis which is text based description
of smells. Specifications which has vocabulary and
taxonomy of smells as input. Generation of algorithm takes
rule cards of smells as input and detection algorithm for
smells are generated. Detection takes detection algorithm
and model of system to be detected is taken as input and
smell specifications of the suspicious class to be code
smells.

Xiaodong Li et al.[5] introduces a technique with an aim
of providing solution for scaling up PSO algorithm in order
to solve the large optimization problem in large scale
systems. CCPSO2 coevolving cooperative particle swarm
optimization is proposed technique based on random
grouping which relies on Cauchy and Gaussian
distributions. This approach is mainly for high dimensional
problems saying from 100 to 200 variables. Evolutionary
algorithms mostly serves as a best algorithm as a best
algorithm for optimization problems. PSO is for managing
large scale optimization problems and comparatively
CCPSO is performing at a very outperformed manner.
CCPSO is being developed to CCPSO2 based on various
new techniques to improve its efficiency. Initially PSO
algorithm does not deal with velocity, instead for
generating next particle swarm positions Cauchy and
Gaussian distributions are employed. In this, inertia weight
PSO and constricted PSO is used. Population diversity is
maintained highly by using ring topology for defining local
neighborhood for each of the particle’s position. lbest PSO
is working on ring topology enhances the convergence
speed at a slower rate and makes lbest outreach higher than

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 19
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

gbest model. Random grouping is better than going for
selection of particular group sizes for each set of iterations.
CCPSO2 remains to work efficiently on only small

population sizes and for high dimensional functions. It is
better to be used on multi-modal functions. CCPSO2 is
enhanced with an ability to manage high dimensional

optimization problems scaled upto 2000 real valued
variables.
3. CONCLUSION AND FUTURE WORK
Detection of code-smells includes the future work for
finding out the solution for correcting the detected code-
smells. After, the code-smells are prioritized based on their
metrics and inter-smell relationships the code-smells, then
solutions to correct the detected and prioritized code
smells. The optimization problem is enhanced using PSO in
detection of code smells. Code smells are detected and
prioritized based on the inter-relation between them and
using certain metrics. The problem decreasing the quality
of software and increasing the effort for maintenance of the
software is being optimized efficiently by the detection of
code-smells. Detection of code-smells are based on the
metrics for each code-smells and they are prioritized using
the prioritizing factors. Inter smell relation is also most
significant feature in detection and prioritization of code
smells ,since the effect of coupled interaction between the
code-smells affects more than the individual code-smells.
So, by detecting and prioritizing the code-smells the
efficiency of the software can be maintained at a high rate.
So, future work includes in detection of code smells by
optimizing the problem. Further, code smells are detected
based on the metrics of each of them and prioritization of
the list of code smells are required based on different

criteria like risk and importance of classes. Finally, the
detected code smells are prioritized based on the inter-
smell relations among the code smells.

REFERENCES
[1] Ali Ouni ,Marouane Kessentini ,Slim Bechikh , Houari

Sahraoui 29 April 2014. “Prioritizing code-smells correction
tasks using chemical reaction optimization” Software
Qual J

[2] Kessentini.M, W Kessentini, HA Sahraoui, M.Boukadoum,
and A Ouni-2011 “Design defects detection and correction
by example,” in Proc. IEEE 19th Int. Conf. Program
Comprehension, pp. 81–90.

[3] Moha,N, YG Gueheneuc, L Duchien, and AF.Le Meur-2010
,“DECOR: A method for the specification and detection of
code and design smells,”IEEE Trans. Softw. Eng., vol. 36, no.
1, pp. 20–36, Jan./Feb.

[4] Mika V Ma ntyla & Casper Lassenius-2006“Subjective
evaluation of software evolvability using code smells: An
empirical study” Empir Software Eng 11: 395–431.

[5] Li.X and X. Yao Apr- 2012 “Cooperatively coevolving
particle swarms for large scale optimization,” IEEE
Trans.Evol. Comput., vol. 16, no. 2,pp. 210–224.

[6] Brown WJ, RC Malveau, WH Brown, and TJ Mowbray-1998
AntiPatterns:Refactoring Software, Architectures,and
Projects in Crisis.Hoboken,NJ,USA: Wiley.

[7] Fowler.M, K.Beck,J.Brant,W. Opdyke, and D. Roberts 1999
Refactoring:Improving the Design of Existing Code.
Reading, MA,USA:Addison Wesley

IJSER

http://www.ijser.org/

